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Bayesian Econometrics

Decision theory

Bayesian Inference
Loss function

Given a set of actions, A, whose consequences depend on
some state of the nature, Θ, the loss function
L(θ, a) : Θ×A → R+, expresses the relative importance of
the error committed by selecting a ∈ A when θ ∈ Θ is the
true.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Bayesian expected loss

Bayesian expected loss

If π(θ) is the believed probability distribution of θ. The
Bayesian expected loss of an action a is
ρ(π, a) = EπL(θ, a) =

∫
Θ
L(θ, a)dF π(θ)
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Bayesian Econometrics

Decision theory

Bayesian Inference
Frequentist risk

Decision rule

A decision rule δ(x) is a function from X , the set of possible
outcomes in the sample space, into A.

Frequentist risk

The risk function of a decision rule δ(x) is defined by
R(θ, δ) = EX

θ [L(θ, δ(X ))] =
∫
X L(θ, δ(X ))dFX (x |θ)
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Bayesian Econometrics

Decision theory

Bayesian Inference
Inadmissibility

R-better

A decision rule δ1 is R-better than a decision rule δ2 if
R(θ, δ1) ≤ R(θ, δ2) for all θ ∈ Θ, with strict inequality for
some θ.

Inadmissibility

A decision rule δ is admissible if there exist no R-better
decision rule. A decision rule δ is inadmissible if there does
exist an R-better decision rule.
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Bayesian Econometrics

Decision theory

Bayesian Inference
The conditional Bayes principle

Bayes action

Choose an action a ∈ A which minimizes ρ(π, a). Such action
will be called a Bayes action and will be denoted aπ

∗
.
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Bayesian Econometrics

Decision theory

Bayesian Inference
The Bayes risk principle

Bayes risk

The Bayes risk of a decision rule δ, with respect to a prior
distribution π on Θ, is defined as r(π, δ) = Eπ[R(θ, δ)]

Bayes rule

A decision rule δ1 is preferred to a rule δ2 if r(π, δ1) < r(π, δ2).
A decision rule which minimizes r(π, δ) is optimal; it is called
a Bayes rule (δπ).
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Bayesian Econometrics

Decision theory

Bayesian Inference
The posterior expected loss

The posterior expected loss

The posterior expected loss of an action a, when the posterior
distribution is π(θ|x), is ρ(π(θ|x), a) =

∫
Θ
L(θ, a)dF π(θ|x)(θ).

A posterior Bayes action (δπ(x)) is any action a ∈ A which
minimizes ρ(π(θ|x), a), or equivalently which minimizes∫

Θ
L(θ, a)f (x |θ)dF π(θ)(θ), where f (x |θ) is the density function.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Bayes rules and posterior expected loss

Result 1

A Bayes rule δπ can be found by choosing, for each x such
that m(x) > 0 (the marginal), an action which minimizes the
posterior expected loss.

Result 2

If δ is a nonrandomized estimator, then
r(π, δ) =

∫
x :m(x)>0

ρ(π(θ|x), δ(x))dFm(x).
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Bayesian Econometrics

Decision theory

Bayesian Inference
Estimation problems

Result 3

If L(θ, a) = (θ − a)2, the Bayes rule is δπ(x) = Eπ(θ|x)[θ]

Result 4

If L(θ, a) = w(θ)(θ − a)2, the Bayes rule is

δπ(x) = Eπ(θ|x)[w(θ)θ]

Eπ(θ|x)[w(θ)]
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Bayesian Econometrics

Decision theory

Bayesian Inference
Estimation problems

Result 5

If L(θ, a) = |θ − a|, any median is a Bayesian estimate of θ.

Result 6

If L(θ, a) =

{
K0(θ − a), θ − a ≥ 0
K1(a − θ), θ − a < 0

}
any K0/(K0 + K1)-fractile

of π(θ|x) is a Bayes estimate of θ.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Hypothesis test

Result 7

In testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, the actions of
interest are a0 and a1, where ai denotes no rejection of Hi .

If L(θ, ai) =

{
0, θ ∈ Θi

Ki , θ ∈ Θj(j 6= i)

}
The posterior expected

losses of a0 and a1 are K0P(Θ1|x) and K1P(Θ0|x),
respectively. The Bayes decision is that corresponding to the
smallest posterior expected loss.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Hypothesis test

Result 7

In the Bayesian test, the null hypothesis is rejected, that is,
action a1 is taken, when K0

K1
> P(Θ0|x)

P(Θ1|x)
, where usually

Θ = Θ0 ∪Θ1, then P(Θ1|x) > K1

K1+K0
.

In classical terminology, the rejection region of the Bayesian

test is C =
{
x : P(Θ1|x) > K1

K1+K0

}
.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Inference losses

Credible sets

If C denotes a credible rule, that is, when x is observed, the
set C (x) ⊂ Θ will be the credible set for θ, and given the loss
function L(θ,C (x)) = 1− IC(x)(θ), then
ρ(π(θ|x),C (x)) = 1− Pπ(θ|x)(θ ∈ C (x)).

Measure of credibility

Given α(x) as a measure of the credibility with which it is felt
that θ is in C (x), it would be reasonable to measure the
accuracy of the report by LC (θ, α(x)) = (IC(x)(θ)− α(x))2.
This loss function could be used to suggest a choice of the
report α(x). So, the Bayes choice of α(x) is then
Pπ(θ|x)(θ ∈ C (x)).
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Bayesian Econometrics

Decision theory

Bayesian Inference
Posterior credible sets

Credible sets

Given the posterior π(θ|x), it is generally possible to compute
the probability that the parameter θ lies in a particular region
ΘR of the parameter space Θ:
P(θ ∈ ΘR |x) =

∫
ΘR
π(θ|x)dθ.

This is a measure of degree of belief that θ ∈ ΘR given the
sample and prior information.

Credible sets

The set ΘC ∈ Θ is a 100(1− α)% credible set w.r.t π(θ|x) if:
P(θ ∈ ΘC |x) =

∫
ΘC
π(θ|x)dθ = 1− α.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Highest Posterior Density sets

HPD

A 100(1− α)% Highest Posterior Density set for θ is a
100(1− α)% credible interval for θ with the property that it
has a smaller space than any other 100(1− α)% credible set
for θ.
C = {θ : π(θ|x) ≥ k}, where k is the largest number such
that

∫
θ:π(θ|x)≥k π(θ|x)dθ = 1− α.

HPDs are very general tool in that they will exist any time the
posterior exists. However, they are not rooted firmly in
probability theory.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Predictive inference

Loss function

Suppose that one has a loss L(z , a) involving the prediction of
Z , so L(θ, a) = EZ

θ L(Z , a) =
∫
L(z , a)g(z |θ)dz , where g(z |θ)

is the density of Z . So, the prediction problem is reduced to
one involving just θ.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Predictive inference

Predictive density

Prediction should be based on the predictive density
π(Z |x) =

∫
π(Z , θ|x)dθ =

∫
π(Z |x , θ)π(θ|x)dθ.

The predictive pdf can be used to obtain a point prediction
given a loss function L(Z , z∗), where z∗ is a point prediction
for Z . We can seek z∗ that minimizes the mathematical
expectation of the loss function.
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Bayesian Econometrics

Decision theory

Bayesian Inference
Model selction

Posterior Model Probability

In addition to learning about parameters or predictions, an
econometrician might be interested in comparing different
models. Given a set of models M{M1,M2, . . . ,MK} then,

π(θi |x ,Mi) = f (x |θi ,Mi )π(θi |Mi )
f (x |Mi )

, {i = 1, 2, . . . ,K} .
So, the posterior model probability is π(Mi |x) = π(x |Mi )π(Mi )

f (x)
,

where the marginal likelihood is equal to
π(x |Mi) =

∫
f (x |θi ,Mi)π(θi |Mi)dθ

i .
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Bayesian Econometrics

Decision theory

Bayesian Inference
Model selction

Posterior Odds ratio

The posterior odds ratio can be used to compare two models,
POij = π(Mi |x)

π(Mj |x)
= π(x |Mi )π(Mi )

π(x |Mj )π(Mj )
= BFij × Prior Odds ratioij .

Table: Jeffreys Guidelines. See also Kass and Raftery (1995) page
777.

Log10(POij) > 2 Decisive support for Mi

3/2 < Log10(POij) < 2 Very strong evidence for Mi

1 < Log10(POij) < 3/2 Strong evidence for Mi

1/2 < Log10(POij) < 1 Substantial evidence for Mi

0 < Log10(POij) < 1/2 Weak evidence for Mi
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Bayesian Econometrics

Bayesian Updating

Bayesian Updating

Now we show the way in which posterior distributions are
updated as new information becomes available. Let θ
represent one parameter or a vector of parameters, and let x1

represent the first set of data obtained in a experiment.

π(θ|x1) ∝ f (x1|θ)π(θ).

Next, suppose that a new experiment is perform and new set
of data x2 is obtained. Then the posterior distribution given
the complete data set π(θ|x1, x2) by the bayes’ rules:
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Bayesian Econometrics

Bayesian Updating

Bayesian Updating

π(θ|x1, x2) ∝ f (x1, x2|θ)π(θ)
= f (x2|x1, θ)f (x1|θ)π(θ)
= f (x2|x1, θ)π(θ|x1).

(1)

If the data sets are independent, f (x2|x1, θ) simplifies to
f (x2|θ). Whether or not the data sets are independent,
however, note that (1) has the form of a likelihood times a
density for θ, but that the latter density is π(θ|x1) : the
posterior distribution based on the initial set of data occupies
the place where a prior distributions is expected.1

1Greenberg, E. (2008). Introduction to Bayesian Econometrics, pag
24.
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Bayesian Econometrics

Large sample properties

Large Samples: Bernstein–von Mises theorem

Consider the case of independent trials, where the likelihood
function is:

L(θ|x) =
∏

f (xi |θ) =
∏

L(θ|xi).

L(θ|xi) is the likelihood contribution of xi . Also define the log
likelihood function as:

l(θ|x) = log L(θ|x)
=

∑
l(θ|xi)

= nl̄(θ|x),

where l̄(θ|x) = (1/n)
∑

l(θ|xi) is the mean log likelihood
contribution.
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Bayesian Econometrics

Large sample properties

Large Samples: Bernstein–von Mises theorem

The posterior distribution can be written as:

π(θ|x) ∝ π(θ)L(θ|x)
∝ π(θ) exp

(
nl̄(θ|x)

)
.

For large n, the exponential term dominates π(θ), which does
not depend on n. Accordingly, we can expect that the prior
distribution will play a relatively smaller role than do the data,
as reflected in the likelihood function, when the sample size is
large.

25 / 29



Bayesian Econometrics

Large sample properties

Large Samples: Bernstein–von Mises theorem

If we denote the true value of θ by θ0, it can be show that

lim
n→∞

l̄(θ|x)→ l̄(θ0|x).

Accordingly, for large n, the posterior distribution collapses to
a distribution with all its probability at θ0. This property is
similar to the criterion of consistency in the frequentist
literature and extends to the multiparameter case.
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Bayesian Econometrics

Large sample properties

Large Samples: Bernstein–von Mises theorem

For large sample, the posterior distribution can therefore be
written approximately as:

π(θ|x) ∝ π(θ) exp
[
− n

2ν
(θ − θ̂)2

]
,

where ν = [−l̄ ′′(θ̂|x)]−1. The second term is in the form of a

normal distribution with mean θ̂ and variance ν/n, and it
dominates π(θ) because of the n in the exponential. See
Greenberg.2)

2Greenberg, E. (2008). Introduction to Bayesian Econometrics, pag
27
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Bayesian Econometrics

Large sample properties

Large Samples: Bernstein–von Mises theorem

In summary, when n is large:3

1 The prior distribution plays a relatively small role in
determining the posterior distribution.

2 The posterior distribution converges to a degenerate
distribution at the true value of the parameter.

3 The posterior distribution is approximately normally
distributed with mean θ̂.

3Greenberg, E. (2008). Introduction to Bayesian Econometrics, pag
27.
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Large sample properties
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